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Stable bifurcations in semelparous Leslie models’
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In this paper, we consider nonlinear Leslie models for the dynamics of semelparous age-structured popula-
tions. We establish stability and instability criteria for positive equilibria that bifurcate from the extinction
equilibrium at Ry = 1. When the bifurcation is to the right (forward or super-critical), the criteria consist of
inequalities involving the (low-density) between-class and within-class competition intensities. Roughly
speaking, stability (respectively, instability) occurs if between-class competition is weaker (respectively,
stronger) than within-class competition. When the bifurcation is to the left (backward or sub-critical),
the bifurcating equilibria are unstable. We also give criteria that determine whether the boundary of
the positive cone is an attractor or a repeller. These general criteria contribute to the study of dynamic
dichotomies, known to occur in lower dimensional semelparous Leslie models, between equilibration and
age-cohort-synchronized oscillations.

Keywords: nonlinear age-structured population dynamics; Leslie matrix; semelparity; bifurcation;
equilibrium; synchronous cycles; stability

1. Introduction

The inherent net reproductive number Ry is a basic quantity that can determine the viability of a
biological population. The typical scenario is that a population at low density is threatened with
extinction when Ry < 1 and can persist if Ry > 1. Mathematically, an equilibrium in which the
population is absent is (locally asymptotically) stable if Ry < 1 and is unstable if Ry > 1. (Indeed,
itis generally the case that uniform persistence or permanence, with respect to the extinction state,
occurs when Ry = 1.) The result of this destabilization as Ry increases through 1 is a transcritical
bifurcation in which a branch of non-extinction equilibria intersects the extinction equilibrium at
Ro = 1. For Ry = 1, this intersecting branch of non-trivial equilibria decomposes into two sub-
branches, corresponding to Ry 1 and Ry 1, respectively, one of which consists of positive
equilibria (the other consists of non-positive, and therefore biologically irrelevant, equilibria).
The general exchange of stability principle implies that stability is passed from the extinction
equilibrium to the non-extinction equilibria as Ry increases through 1. We say that the bifurcating
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present at each point in time) always bifurcates from the extinction state at Ry = 1, along with
the positive equilibria [7]. This dynamic — periodic oscillations with non-overlapping age classes
— is obviously quite different from that of the positive equilibrium — equilibration with all age
classes present. Moreover, other cycles with two or more non-empty classes per time step can,
under some circumstances, also bifurcate at Ry = 1 [8]. Although the dynamics on the boundary
of the cone can be quite complicated, they nonetheless represent oscillations with missing age
classes, which is in stark contrast to equilibration with all age classes present.

The number of age classes in the semelparous Leslie model (i.e. the dimension of the model)
is essentially the length of the maturation period. For short maturation periods, that is, for semel-
parous Leslie models of dimension 2 or 3, it is known that a dynamic dichotomy exists between
the bifurcation branch of positive equilibria and the boundary of the positive cone; namely, when
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Note that Equation (1) maps Ry, into itself and d Ry, into itself.
We introduce the notation

1 forj =1,
_ )it
Fi= H.;‘ forj=23,...,, )
=1

and define

Ro IL[-f.

=1
the inherent net reproductive number (i.e. the expected number of offspring per newborn per life
time in the absence of density effects). We can introduce Rq explicitly into the model equations
by writing

S@) =
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Using the notation

g,
0 1
06,
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3. Stability criteria for bifurcating positive equilibria

Our main result is in the following theorem, the proof of which is given in Appendix 1.

THEOREM 3 A4f ,e Al a 4 A2 hé s We he¥ e . he fo"owi g Dif icqim :a:‘[[.\‘fo:[he
] _1_-.4’ ] ] .. b
e, epam Sle ie,, ®0¢ (1)a d(2)g Ro =1

@) & I}Ize case of a sigh (& pes-csj ica]) bif g ia H(i.e. vha ay < 0),; helbif rc?'i gresite
ey 1ibsia u Theo:gd 2 ase, for Ry 1, (eca 'y asy, . e icd y) Fabe if a' ax <O fos
’%:2’3""’_4/1/ + 1 Theya;a«f fabeifai > 0ferq eaf @ e§=2,3,...,‘b,1/2+1.

(b) & ;éle case of a ef (& b-csjica) bif icqim (ie. wha ay >0), he bif icqu g posite
ey 1ibsiad Theo:g’/ 2 ase, fo; Ry  lu4 Fabe.

For a left bifurcation to occur, sufficiently strong positive feedback or Allee effects are required
(as represented by the derivatives d°0; > 0 appearing in a;). We see from Theorem 3 that the
bifurcating positive equilibria are always unstable in this case. In the case of a right bifurcation,
however, the bifurcating positive equilibria might or might not be stable. That is to say, the direction
of bifurcation does not always determine stability, as occurring in models with primitive projection
matrices [6,9]. One case in which the direction of bifurcation does determine the stability is that
when there is no between-class competition, since then we have az = a; for all *.

COROLLARY 1 A.tf‘,eAl a 4 A2 hc];}a ;7th 1 0be vea -cla."."ccb,pq{in oca if Ifa; =
#=1£, %0, <O, ha ; he (& pes-csi ica”y) bif icqgiu gpost e eu ! ibsia i Theese, 2 ase, for

Ro 1, (eca y a¥y, . @ ica y) fabe. Ifa
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calculate subscripts mod”, and writ
ai = z
=1
We find it convenient to define the d
>
Py Sy

The denominator is a measure of within-class competi o:l
070+ in the nure
ivorship of age dla

the derivatives 9°g, . The derivative
of the jth age class has on the sury
numerator in p, is a measure of thg

unidirectional pairings of age classeq.
the remaining classes whose ages afe 4 units apart agpe
effect of compedjitip
intensity).

thesump, +p _, measures the totg
(relative to within-class competitior

We begin with two examples. First,

18,19]. According to Theorem 3, thq

or equivalently

The positive equilibria are unstable §f this inequality i$ rd
equilibrium bifufcag
hse that p; < 1 (s
A similar result holds for the cage,,

in [7,11].) Thus, a stable (unstable)
between-class competition in the se

equilibria are stable if

3
az = Zm

=1

11°2

1

M=

(M. G higa o S.M H

uantities

Fi0) T+ 4
:1ﬁla, d ,

2
0 0
7070+ rid'd

intensity of compe
A little reflection sh

we consider the ¢as
bifurcating positiv

0%, + 509p;
020, + £09p,

= 3. Accordjng

A

fan

—

AN

D+ 4 Rex

¢ (6)

t low population densities) as based on
r measures the effect that the density
-+ 4 modulo , . This means that the
bn among these selected (but not all)
s that the competitive pairings among
n the numerator of p . As a result,
among all classes thaf are 4 Units apart

= 2 known as Ebenman’s model [11,

quilibria are stable if

(- <o

rsed. (This is the same result obtained
n occurs when there is weak (strong)
).

Theorem 3, the bifurcating positive
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In general, from Equation (6) and the 2m-periodicity of cosine, we have

-1
2 .,
az = zﬁl 3, +‘2 iﬁjajpoj“'-( cos <:(" - 1)1)
=1 4

=1 j=1

-1
0 . 2m
= 0%, +) cos| —
=1 4=1 4 L

87
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and the stability inequalities for even , are

g2l

1+Bi,,0,,+ > Biyp,+p,-)>0 ¥=2... 1p+1 (10)
,;:1

Instability results if at least one inequality is reversed in Equations (9) and (10).

We can summarize these results with the following notation. For any matrix P = (g, ;), define
cos(P)  (cos(g, ;). Let M be the 2%, 102 matrix whose entries are the products of the row
and column indices, that is, M = (4]) Note that, by the 2m-periodicity of cosine and by identity
(8), we have

cos <i—nM) = (cos (i—n4 ])) = (cos (i—n[fj] mod,, )) = (B, +1,)

Define the_ P 1/2-Vectors
1 p1+p, -1 PL+p, -1
. 1 p2+p —2 p2 + p -2
1 . R and® Y for,, evenand for,, odd.
1 p”, 12 p», w pl 172+1

Rewriting Equations (9) and (10) and applying Theorem 3, we obtain the following result.

THEOREM 4 ASF e Al g 4 A3 h]f b Tha fes Ry 1, he bif icqi g posi¥ e ey llib:ia ]
Theo,e 3ase (oca yas, p eica y) fab e if

A 21
1+ cos (—M)“‘ R, (12)
P
The ey L]ib:ia ared s .fab]e if
A 21 =
1+ cos (—M)“ / R (12)
Vs

The components p, + P, — of the vector¥” are measures of the total (relative) competition
among age classes s units apart While there are, —1 ratios p ,, the stability and instability criteria
in Theorem 4 involve onlyb, 172 Quantities. The 1/2
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Table 1. Criteria (11) for the stability of the bifur-
cating positive equilibria for Ry 2 1.

The stability criteria (11)

1-p1>0

1—3(pr+p2) >0

1-p2>0

1= +p3)+p2>0Q

5 L+ 5P+ pa) — 552 (P2 +p3) > 0
1— =1 +p4g) + =2 (p2 +p3) >0

6 1—P3+%(Dl+95)—l(pz+94)>0

1+p3—5(p1+ps)—5(P2+pa)>0

1—p3—(p1+ps)+(p2+ps) >0

AN R

Note: The equilibria are unstable if (at least) one inequality
is reversed.

classes are identical for all age classes. Then,

01 =01(x1) and g =o0y(x;) for, =2,3,...,

s
and the competition ratios are
6?02
,=—=— forally=2,...,,6 —1
p! 6?0’1 4 '
In this case, the criteria for stable bifurcating positive equilibria are
900, <> 21
1+ 12% cos ( [(f—1)4mod, ) >0 fork=2,3,...,, 1+ 1.
6101 = P 4 4
p

From Equation (A4) in Appendix 2, we have

-1
| 21
> cos (—[(% —1)4] modd> +1=0
=1 Vs ’
forx=2,3,... 2+l and the stability criteria reduce to

650'2

- <1
65’01

The reverse inequality implies instability.

Exa p]e 2 The semelparous LPA model is the, , = 3 dimensional semelparous Leslie model
(1) and (2) with

o1(x) =1,

02(x) = exp(—Bzzx3),

03(x) = exp(—Pa1x1 — Bazxz)

and 5 = 1. The well-known LPA model is the basic model used in extensive experimental studies
of nonlinear dynamics involving the species Tiibéhi p (flour beetles) [4,12]. The LPA model is
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4. Synchronous cycles and the boundary of the positive cone

We see from Theorem 3 that the bifurcating positive equilibria of the semelparous Leslie map (1)
and (2) assured by Theorem 2 can be either stable or unstable, even in the case of a right (super-
critical) bifurcation. If the positive equilibria are unstable in the case of a right bifurcation, then
for Ry 1, both these and the extinction equilibria are unstable. In that case, a natural question
to be asked is whether there is another bifurcating invariant set that is stable.

It was shown in [7] that, in addition to a branch of positive equilibria, there also bifurcates from
the extinction equilibrium at Ry = 1 a branch of single-class , -cycles. A single—classu -cycle of
Equations (1) and (2) is a periodic cycle of period , in which exactly one class is present at each
point in time:

x1(1) 0 0
0 x2(2) 0
=] . |-@= . |- -F)=] . |- (14
0 0 x,G)
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it follows that for every synchronous orbit we have
im = LS (Ro [To @0, . x o») =13 <Ro [To (?f(i))> ,
I j=0 =1 Fi=1 =1

where X( ) approaches the cycle ¢( ) of period ¢. From [24, Theorem 4.1], we obtain the following
result.

THEOREM 5 A%F , ¢ A3, Ada A A5 hd i,
(@) The be 4 3a:y OR, of he posit eca eisa g, sac e;if
¥
> In (Ro ﬁq (a(,'))) <0
':1 =1

foi & esy S chim @ Spes sienic cyc e c(j) @ ORy. Hese p is; he pesion ofc(]).
(b) The ba 4 dasy ORy, of he posi ¥ e ca eifa sepe e if

¥

> in (Ro o (&(;))) >0
j:l =1

for& esy s chie @ !pe:io:ltic cycle c(j) @ ORy.

Since there exists a single-class , -cycle forR



COROLLARY 3 ASF v eAda :7A4
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For higher dimensional models, this dichotomy is an open question. Part of this question
concerns the stability or instability of the bifurcating equilibria. The main result of this paper,
Theorem 3, establishes stability and instability criteria for the bifurcating positive equilibria and
Ro = 1 under general conditions and arbitrary dimensionb, . Left (or sub-critical) bifurcations
always result in instability, as is expected. This occurs when positive feedback (Allee effects) in
the dependence on survivorship and fecundity rates on population density occurs with sufficient
strength. When negative density feedback predominates, the bifurcation is to the right (super-
critical) and the criteria in Theorem 3 determine when the bifurcating equilibria are stable or
unstable. While the number and details of these technical criteria, and hence their ecological
interpretation, depend on the dimension , of the Leslie model, one general conclusion that can
be drawn is that stability occurs when between-class competition is weak relative to within-
class competition (Corollary 2). In the case when certain monotonicity conditions hold on the
nonlinearities at least near the origin & = 0, we expressed in Theorem 4 the stability and instability
criteria in terms of certain ratios that directly measure the relative competition intensity between
age classes of fixed distances apart compared to within-class competition intensity.

The stability/instability criteria for bifurcating equilibria established in this paper address only
part of the dynamic consequences that can result when a right (super-critical) bifurcation occurs
at Ry = 1. If the bifurcating equilibria are unstable, a question that arises (especially since the
extinction equilibrium is also unstable) is what the attractor of orbits might be. Based on the known
results for , = 2 and 3, an attractor candidate in this case is the boundary of the positive cone
(or synchronous cycles that lie on the boundary of the cone). In Section 4, we have given some
criteria under which the boundary of the cone is in fact an attractor or a repeller. This question
is not fully resolved for dimensions , = 4, however. While the dynamic dichotomy between the
positive equilibria and the boundary of the positive cone has been established for models with
specialized properties [10], the numerical example given in Section 4 suggests that perhaps the
dichotomy does not hold in general.
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Let¥:(€) and “m(€) denote the right and left eigenvectors of J(€) associated with Az (€):

J(eY"x(e) = As(e)x(e),

- (A3)
w(€)J(8) = Ai(e) m(e).

We denote the standard inner product of two vectors®™ = col¢, ) and ‘w= row( w) by » ) Proof A A
~ps o 4 -
W= Z, =1 v

where the bar in y denotes complex conjugation.

LEMMA Al Fese =0, ve hd e, he expa Sia

IN:(e)] = 1+ Reg :A: () + O(€?).

Presf Note |A:(0) =4 1| = 1. Write A;(0) = az + is. Then,

s :_ 2
[A:(e)]? = |cos (M) + isin <M> + (az + iBi)e + O(e?)
V4 V4
r 2 r_ 2
= [cos <M> + aze + 0(82)] + [sin <M> + Bie + O(sz)]
& i
and
dlA:(e)| _ 2n(k —1) Lo (2n(t-1)
de EZO_G‘COS( Py >+B"Sm< o >
From

Re{ :A (0)) = Re ([cos <M> —isin (Mﬂ [o: + i5¥]>

4 4

= 03 COS (M) + B; Sin (M)

P 7
follows2
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LemMMA A2 The sigh a o ef eiga* e o:5of J(0) asseciq e v h eiga™ da i ase

F1
Fe g
ORI PO R e o A R L
py v

Th £ Ww(0):(0) =,,.
Preef That these are eigenvectors is straightforwardly verified by substitution into the equations

J(0Y+(0) =« #x(0),

w(0)7(0) ="« w(0)
|

and recalling definition (3) of g, .

The Jacobian evaluated at the equilibrium x(€) and Rg = 1 + € has the additive form J(€) = L(g) + M (g) where L(g)
and M (g) are given by Equations (A1) and (A2). Therefore, from Lemma A.2, we have

Aig
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This gives

L (OF+(0) =

Recalling definition (3) of g, , we have

L (0y+(0) =

and

(

s

(1 —a*t zﬁjaqu, ) pe v

— —(,—2

1_ -1 —12 20 —(, -1)
ﬁ:/ 4 Ffajo-u)puu ;(‘;
Jj=1

-1
(—-“wl X:fj@,-otn) F1

J=1

i
(—&all Zﬁ.ft’/%Z) e it
j=1

i
_ -1 K =, =2
( £ -1a; ‘E #j9; q,—l)p,—q e
j=1

j=1

_al_ltfjajpol F2
=1

—1 0 -1

a4 iﬁjajUZ F8
=1

=1

w(0),L (0¥:(0) =pi* (1 —a 2” =

=
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LeMMA A4 Fos A:(0) & Le,  aA3, ve he e; hg

W(0), M (OF :(0) = —azh « 33 pioaf 7

 =1j=1
a ;}ha ce
04—J
A:(0) = 7a1i5 ii”l 0jgu s 7.
+=1j=1

seef From Equation (A2) evaluated at the equilibrium x(€) and Ry = 1 + €, we calculate

-1 0 -1 0 —l
p1016% (0) p00% (0) - 3, 0% (0)
%0109x}(0) %0,09x](0) .fla of’xl(O)
M(0)= _ . :
.‘"/ _10104?_1)(” _1(0) .:', _1020410_1)(” _1(0) e .:'} _1(1’ Gllo_lxd _1(0)

from which we can calculate

—al Z«' 1p]a 0'94
rea Y310 0{3
MOF:©) = | —rsart Yemardof 70

" a0 —G-D)
£, 9 Z‘f:ll‘/azod 4

and
A ~ —_ -1 =(-1) -1 0 —(-1)
wO.M OF0) =—a*S 00l (970 cart S niojod ;
j=1 j=1
_ —(i—1 ¥ (-1
—u %alliﬁ.iafog' Y- 10112ﬂ.f¢3.if{?—! (0
= =1
-1 1 1% 0 2-j
= tﬁiajfﬂ,ﬁ Vg —at 3o pioof 7
j=1 j=1
_ o _ .
_allifiajcg’ . —"'—allii./ajof—!‘é /,
j=1 j=1

which yields the formula in the lemma. |
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Appendix 2. A lemma

LEMMA A.6 Fo:u =2



