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In this paper, we consider nonlinear Leslie models for the dynamics of semelparous age-structured popula-
tions. We establish stability and instability criteria for positive equilibria that bifurcate from the extinction
equilibrium at R0 = 1. When the bifurcation is to the right (forward or super-critical), the criteria consist of
inequalities involving the (low-density) between-class and within-class competition intensities. Roughly
speaking, stability (respectively, instability) occurs if between-class competition is weaker (respectively,
stronger) than within-class competition. When the bifurcation is to the left (backward or sub-critical),
the bifurcating equilibria are unstable. We also give criteria that determine whether the boundary of
the positive cone is an attractor or a repeller. These general criteria contribute to the study of dynamic
dichotomies, known to occur in lower dimensional semelparous Leslie models, between equilibration and
age-cohort-synchronized oscillations.

Keywords: nonlinear age-structured population dynamics; Leslie matrix; semelparity; bifurcation;
equilibrium; synchronous cycles; stability

1. Introduction

The inherent net reproductive number R0 is a basic quantity that can determine the viability of a
biological population. The typical scenario is that a population at low density is threatened with
extinction when R0 < 1 and can persist if R0 > 1. Mathematically, an equilibrium in which the
population is absent is (locally asymptotically) stable if R0 < 1 and is unstable if R0 > 1. (Indeed,
it is generally the case that uniform persistence or permanence, with respect to the extinction state,
occurs when R0 > 1.) The result of this destabilization as R0 increases through 1 is a transcritical
bifurcation in which a branch of non-extinction equilibria intersects the extinction equilibrium at
R0 = 1. For R0 ≈ 1, this intersecting branch of non-trivial equilibria decomposes into two sub-
branches, corresponding to R0 � 1 and R0 � 1, respectively, one of which consists of positive
equilibria (the other consists of non-positive, and therefore biologically irrelevant, equilibria).

The general exchange of stability principle implies that stability is passed from the extinction
equilibrium to the non-extinction equilibria as R0 increases through 1. We say that the bifurcating
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82 J.M. Cushing and S.M. Henson

present at each point in time) always bifurcates from the extinction state at R0 = 1, along with
the positive equilibria [7]. This dynamic – periodic oscillations with non-overlapping age classes
– is obviously quite different from that of the positive equilibrium – equilibration with all age
classes present. Moreover, other cycles with two or more non-empty classes per time step can,
under some circumstances, also bifurcate at R0 = 1 [8]. Although the dynamics on the boundary
of the cone can be quite complicated, they nonetheless represent oscillations with missing age
classes, which is in stark contrast to equilibration with all age classes present.

The number of age classes in the semelparous Leslie model (i.e. the dimension of the model)
is essentially the length of the maturation period. For short maturation periods, that is, for semel-
parous Leslie models of dimension 2 or 3, it is known that a dynamic dichotomy exists between
the bifurcation branch of positive equilibria and the boundary of the positive cone; namely, when
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Note that Equation (1) maps Rm+ into itself and ∂Rm+ into itself.
We introduce the notation

pj =

⎧⎪⎨
⎪⎩

1 for j = 1,
j−1∏
n=1

sn for j = 2, 3, . . . , m
(3)

and define

R0 �
m∏

n=1

sn,

the inherent net reproductive number (i.e. the expected number of offspring per newborn per life
time in the absence of density effects). We can introduce R0 explicitly into the model equations
by writing

S(x̂) =
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Using the notation

∂0
j σn � ∂σn
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3. Stability criteria for bifurcating positive equilibria

Our main result is in the following theorem, the proof of which is given in Appendix 1.

Theorem 3 Assume A1 and A2 hold. We have the following bifurcation results for the
semelparous Leslie model (1) and (2) at R0 = 1:

(a) In the case of a right (super-critical) bifurcation (i.e. when a1 < 0), the bifurcating positive
equilibria in Theorem 2 are, for R0 � 1, (locally asymptotically) stable if all ak < 0 for
k = 2, 3, . . . , m1/2 + 1. They are unstable if ak > 0 for at least one k = 2, 3, . . . , m1/2 + 1.

(b) In the case of a left (sub-critical) bifurcation (i.e. when a1 > 0), the bifurcating positive
equilibria in Theorem 2 are, for R0 � 1, unstable.

For a left bifurcation to occur, sufficiently strong positive feedback or Allee effects are required
(as represented by the derivatives ∂0

n σj > 0 appearing in a1). We see from Theorem 3 that the
bifurcating positive equilibria are always unstable in this case. In the case of a right bifurcation,
however, the bifurcating positive equilibria might or might not be stable. That is to say, the direction
of bifurcation does not always determine stability, as occurring in models with primitive projection
matrices [6,9]. One case in which the direction of bifurcation does determine the stability is that
when there is no between-class competition, since then we have ak = a1 for all k.

Corollary 1 Assume A1 and A2 hold and that no between-class competition occurs. If a1 =
�m

n=1pn∂0
n σn < 0, then the (super-critically) bifurcating positive equilibria in Theorem 2 are, for

R0 � 1, (locally asymptotically) stable. If a
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calculate subscripts mod m and write

ak =
m∑

n=1

pn∂0
n σn +

m∑
j=1

m−1∑
q=1

pj∂
0
j σj+q Re uq

k . (6)

We find it convenient to define the quantities

ρq �
∑m

j=1 pj∂
0
j σj+q∑m

n=1 pn∂0
n σn

, q = 1, 2, . . . , m − 1.

The denominator is a measure of within-class competition (at low population densities) as based on
the derivatives ∂0

n σn. The derivative ∂0
j σj+q in the numerator measures the effect that the density

of the jth age class has on the survivorship of age class j + q modulo m. This means that the
numerator in ρq is a measure of the intensity of competition among these selected (but not all)
unidirectional pairings of age classes.A little reflection shows that the competitive pairings among
the remaining classes whose ages are q units apart appear in the numerator of ρm−q. As a result,
the sum ρq + ρm−q measures the total effect of competition among all classes that are q units apart
(relative to within-class competition intensity).

We begin with two examples. First, we consider the case m = 2 known as Ebenman’s model [11,
18,19]. According to Theorem 3, the bifurcating positive equilibria are stable if

a2 =
2∑

n=1

pn∂0
n σn +

2∑
j=1

pj∂
0
j σj+1(−1) < 0

or equivalently

ρ1 = ∂0
1 σ2 + s1∂0

2 σ1

∂0
1 σ1 + s1∂0

2 σ2
< 1.

The positive equilibria are unstable if this inequality is reversed. (This is the same result obtained
in [7,11].) Thus, a stable (unstable) equilibrium bifurcation occurs when there is weak (strong)
between-class competition in the sense that ρ1 < 1 (ρ1 > 1).

A similar result holds for the case m = 3. According to Theorem 3, the bifurcating positive
equilibria are stable if

a2 =
3∑

n=1

pn∂ 2∂ j+ ∂2=∂0
1σ2

+ s 1 ∂0n

σ1+s 1
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In general, from Equation (6) and the 2π -periodicity of cosine, we have

ak =
m∑

n=1

pn∂0
n σn +

m−1∑
q=1

m∑
j=1

pj∂
0
j σj+q cos

(
2π

m
(k − 1)q

)

=
m∑

n=1

pn∂0
n σn +

m−1∑
q=1

cos

(
2π

mm
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and the stability inequalities for even m are

1 + Bk,m1/2 ρm1/2 +
m1/2−1∑

q=1

Bk,q(ρq + ρm−q) > 0, k = 2, . . . , m1/2 + 1. (10)

Instability results if at least one inequality is reversed in Equations (9) and (10).
We can summarize these results with the following notation. For any matrix P = (pnj), define

cos(P) � (cos(pnj)). Let M be the m1/2 × m1/2 matrix whose entries are the products of the row
and column indices, that is, M = (nj). Note that, by the 2π -periodicity of cosine and by identity
(8), we have

cos

(
2π

m
M

)
=

(
cos

(
2π

m
nj

))
=

(
cos

(
2π

m

[
nj

]
mod m

))
= (Bn+1,j).

Define the m1/2-vectors

1̂ �

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ ∈ R

m1/2
+ and v̂ �

⎛
⎜⎜⎜⎝

ρ1 + ρm−1

ρ2 + ρm−2
...

ρm1/2

⎞
⎟⎟⎟⎠ for m even and

⎛
⎜⎜⎜⎝

ρ1 + ρm−1

ρ2 + ρm−2
...

ρm1/2 + ρm1/2+1

⎞
⎟⎟⎟⎠ for m odd.

Rewriting Equations (9) and (10) and applying Theorem 3, we obtain the following result.

Theorem 4 Assume A1 and A3 hold. Then for R0 � 1, the bifurcating positive equilibria in
Theorem 3 are (locally asymptotically) stable if

1̂ + cos

(
2π

m
M

)
v̂ ∈ R

m1/2
+ . (11)

The equilibria are unstable if

1̂ + cos

(
2π

m
M

)
v̂ /∈ R̄

m1/2
+ . (12)

The components ρq + ρm−q of the vector v̂ are measures of the total (relative) competition
among age classes q units apart. While there are m − 1 ratios ρq, the stability and instability criteria
in Theorem 4 involve only m1/2 quantities. The m1/2
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Table 1. Criteria (11) for the stability of the bifur-
cating positive equilibria for R0 � 1.

m The stability criteria (11)

2 1 − ρ1 > 0
3 1 − 1

2 (ρ1 + ρ2) > 0
4 1 − ρ2 > 0

1 − (ρ1 + ρ3) + ρ2 > 0
5 1 +

√
5−1
4 (ρ1 + ρ4) −

√
5+1
4 (ρ2 + ρ3) > 0

1 −
√

5+1
4 (ρ1 + ρ4) +

√
5−1
4 (ρ2 + ρ3) > 0

6 1 − ρ3 + 1
2 (ρ1 + ρ5) − 1

2 (ρ2 + ρ4) > 0
1 + ρ3 − 1

2 (ρ1 + ρ5) − 1
2 (ρ2 + ρ4) > 0

1 − ρ3 − (ρ1 + ρ5) + (ρ2 + ρ4) > 0

Note: The equilibria are unstable if (at least) one inequality
is reversed.

classes are identical for all age classes. Then,

σ1 = σ1(x1) and σn = σ2(x1) for n = 2, 3, . . . , m

and the competition ratios are

ρq = ∂0
1 σ2

∂0
1 σ1

for all q = 2, . . . , m − 1.

In this case, the criteria for stable bifurcating positive equilibria are

1 + ∂0
1 σ2

∂0
1 σ1

m−1∑
q=1

cos

(
2π

m
[(k − 1)q] mod m

)
> 0 for k = 2, 3, . . . , m1/2 + 1.

From Equation (A4) in Appendix 2, we have

m−1∑
q=1

cos

(
2π

m
[(k − 1)q] mod m

)
+ 1 = 0

for k = 2, 3, . . . , m1/2 + 1 and the stability criteria reduce to

∂0
1 σ2

∂0
1 σ1

< 1.

The reverse inequality implies instability.

Example 2 The semelparous LPA model is the m = 3 dimensional semelparous Leslie model
(1) and (2) with

σ1(x̂) = 1,

σ2(x̂) = exp(−β23x3),

σ3(x̂) = exp(−β31x1 − β33x3)

and s2 = 1. The well-known LPA model is the basic model used in extensive experimental studies
of nonlinear dynamics involving the species Tribolium (flour beetles) [4,12]. The LPA model is
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4. Synchronous cycles and the boundary of the positive cone

We see from Theorem 3 that the bifurcating positive equilibria of the semelparous Leslie map (1)
and (2) assured by Theorem 2 can be either stable or unstable, even in the case of a right (super-
critical) bifurcation. If the positive equilibria are unstable in the case of a right bifurcation, then
for R0 � 1, both these and the extinction equilibria are unstable. In that case, a natural question
to be asked is whether there is another bifurcating invariant set that is stable.

It was shown in [7] that, in addition to a branch of positive equilibria, there also bifurcates from
the extinction equilibrium at R0 = 1 a branch of single-class m-cycles. A single-class m-cycle of
Equations (1) and (2) is a periodic cycle of period m in which exactly one class is present at each
point in time:

x̂(1) =

⎛
⎜⎜⎜⎝

x1(1)

0
...
0

⎞
⎟⎟⎟⎠ → x̂(2) =

⎛
⎜⎜⎜⎝

0
x2(2)

...
0

⎞
⎟⎟⎟⎠ → · · · → x̂(m) =

⎛
⎜⎜⎜⎝

0
0
...

xm(m)

⎞
⎟⎟⎟⎠ → x̂(1). (14)
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it follows that for every synchronous orbit we have

lim
t→+∞

1

t

t−1∑
j=0

ln

(
R0

m∏
n=1

σn(x1(j), x2(j), . . . , xm(j))

)
= 1

p

p∑
j=1

ln

(
R0

m∏
n=1

σn(ĉ(j))

)
,

where x̂(t) approaches the cycle ĉ(t) of period p. From [24, Theorem 4.1], we obtain the following
result.

Theorem 5 Assume A3, A4 and A5 hold.

(a) The boundary ∂Rm+ of the positive cone is an attractor if

p∑
j=1

ln

(
R0

m∏
n=1

σn(ĉ(j))

)
< 0

for every synchronous periodic cycle ĉ(j) on ∂Rm+. Here p is the period of ĉ(j).
(b) The boundary ∂Rm+ of the positive cone is a repeller if

p∑
j=1

ln

(
R0

m∏
n=1

σn(ĉ(j))

)
> 0

for every synchronous periodic cycle ĉ(j) on ∂Rm+.

Since there exists a single-class m-cycle forR t
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Corollary 3 Assume A3 and A4
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For higher dimensional models, this dichotomy is an open question. Part of this question
concerns the stability or instability of the bifurcating equilibria. The main result of this paper,
Theorem 3, establishes stability and instability criteria for the bifurcating positive equilibria and
R0 ≈ 1 under general conditions and arbitrary dimension m. Left (or sub-critical) bifurcations
always result in instability, as is expected. This occurs when positive feedback (Allee effects) in
the dependence on survivorship and fecundity rates on population density occurs with sufficient
strength. When negative density feedback predominates, the bifurcation is to the right (super-
critical) and the criteria in Theorem 3 determine when the bifurcating equilibria are stable or
unstable. While the number and details of these technical criteria, and hence their ecological
interpretation, depend on the dimension m of the Leslie model, one general conclusion that can
be drawn is that stability occurs when between-class competition is weak relative to within-
class competition (Corollary 2). In the case when certain monotonicity conditions hold on the
nonlinearities at least near the origin x̂ = 0̂, we expressed in Theorem 4 the stability and instability
criteria in terms of certain ratios that directly measure the relative competition intensity between
age classes of fixed distances apart compared to within-class competition intensity.

The stability/instability criteria for bifurcating equilibria established in this paper address only
part of the dynamic consequences that can result when a right (super-critical) bifurcation occurs
at R0 = 1. If the bifurcating equilibria are unstable, a question that arises (especially since the
extinction equilibrium is also unstable) is what the attractor of orbits might be. Based on the known
results for m = 2 and 3, an attractor candidate in this case is the boundary of the positive cone
(or synchronous cycles that lie on the boundary of the cone). In Section 4, we have given some
criteria under which the boundary of the cone is in fact an attractor or a repeller. This question
is not fully resolved for dimensions m ≥ 4, however. While the dynamic dichotomy between the
positive equilibria and the boundary of the positive cone has been established for models with
specialized properties [10], the numerical example given in Section 4 suggests that perhaps the
dichotomy does not hold in general.
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Let v̂k(ε) and ŵk(ε) denote the right and left eigenvectors of J(ε) associated with λk(ε):

J(ε)v̂k(ε) = λk(ε)v̂k(ε),

ŵk(ε)J(ε) = λ̄k(ε)ŵk(ε).
(A3)

We denote the standard inner product of two vectors v̂ = col(vn) and ŵ = row(wn) by

〈ŵ, v̂〉 �
∑m

n=1
w̄nvn,

where the bar in w̄n denotes complex conjugation.

Lemma A.1 For ε ≈ 0, we have the expansion

|λk(ε)| = 1 + Re(ūkλ′
k(0))ε + O(ε2).

Proof Note |λk(0)| = |uk | = 1. Write λ′
k(0) = αk + iβk . Then,

|λk(ε)|2 =
∣∣∣∣cos

(
2π(k − 1)

m

)
+ i sin

(
2π(k − 1)

m

)
+ (αk + iβk)ε + O(ε2)

∣∣∣∣
2

=
[

cos

(
2π(k − 1)

m

)
+ αkε + O(ε2)

]2

+
[

sin

(
2π(k − 1)

m

)
+ βkε + O(ε2)

]2

and

d|λk(ε)|
dε

∣∣∣∣
ε=0

= αk cos

(
2π(k − 1)

m

)
+ βk sin

(
2π(k − 1)

m

)
.

From

Re(ūkλ′(0)) = Re

([
cos

(
2π(k − 1)

m

)
− i sin

(
2π(k − 1)

m

)]
[αk + iβk]

)

= αk cos

(
2π(k − 1)

m

)
+ βk sin

(
2π(k − 1)

m

)

follows2
λ

λ ) Proof λv λ (m λ)
Proofλ′ (

k

+

′

/

F

5

 

1

 

T

f

′

3

.

4

9

7

2

 

0

 

T

D

′

(

≤
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T
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′
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Lemma A.2 The right and left eigenvectors of J(0) associated with eigenvalue uk are

v̂k(0) =

⎛
⎜⎜⎜⎜⎜⎝

p1

p2u−1
k

p3u−2
k

...
pmu−(m−1)

k

⎞
⎟⎟⎟⎟⎟⎠ , ŵk(0) = (

p−1
1 p−1

2 ūk p−1
3 ū2

k · · · p−1
m ūm−1

k

)
.

Thus, 〈ŵk(0), v̂k(0)〉 = m.

Proof That these are eigenvectors is straightforwardly verified by substitution into the equations

J(0)v̂k(0) = uk v̂k(0),

ŵk(0)J(0) = ūk ŵk(0)

and recalling definition (3) of pn. �

The Jacobian evaluated at the equilibrium x̂(ε) and R0 = 1 + ε has the additive form J(ε) = L(ε) + M(ε) where L(ε)

and M(ε) are given by Equations (A1) and (A2). Therefore, from Lemma A.2, we have

λ′
kβ
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This gives

L′(0)v̂k(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝p−1

m − p−1
m a−1

1

m∑
j=1

pj∂
0
j σm

⎞
⎠ pmu−(m−1)

k⎛
⎝−s1a−1

1

m∑
j=1

pj∂
0
j σ1

⎞
⎠ p1⎛

⎝−s2a−1
1

m∑
j=1

pj∂
0
j σ2

⎞
⎠ p2u−1

k

...⎛
⎝−sm−1a−1

1

m∑
j=1

pj∂
0
j σm−1

⎞
⎠ pm−1u−(m−2)

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recalling definition (3) of pn, we have

L′(0)v̂k(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝1 − a−1

1

m∑
j=1

pj∂
0
j σm

⎞
⎠ p1u−(m−1)

k⎛
⎝−a−1

1

m∑
j=1

pj∂
0
j σ1

⎞
⎠ p2⎛

⎝−a−1
1

m∑
j=1

pj∂
0
j σ2

⎞
⎠ p3u−1

k

...⎛
⎝−a−1

1

m∑
j=1

pj∂
0
j σm−1

⎞
⎠ pmu−(m−2)

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

〈ŵk(0), L′(0)v̂k(0)〉 = p−1
1

⎛
⎝1 − a−1

1

m∑
j=1

pj −m�≥ a

−1�

� p
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Lemma A.4 For λ′
k(0) in Lemma A.3, we have that

〈ŵk(0), M ′(0)v̂k(0)〉 = −a−1
1 uk

m∑
n=1

m∑
j=1

pj∂jσ
0
n un−j

k

and hence

λ′
k(0) = − 1

m
a−1

1 uk

m∑
n=1

m∑
j=1

pj∂jσ
0
n un−j

k .

Proof From Equation (A2) evaluated at the equilibrium x̂(ε) and R0 = 1 + ε, we calculate

M ′(0) =

⎛
⎜⎜⎜⎝

p−1
m ∂1σ 0

mx′
m(0) p−1

m ∂2σ 0
mx′

m(0) · · · p−1
m ∂mσ 0

mx′
m(0)

s1∂1σ 0
1 x′

1(0) s1∂2σ 0
1 x′

1(0) · · · s1∂mσ 0
1 x′

1(0)

...
...

...
sm−1∂1σ 0

m−1x′
m−1(0) sm−1∂2σ 0

m−1x′
m−1(0) · · · sm−1∂mσ 0

m−1x′
m−1(0)

⎞
⎟⎟⎟⎠ ,

from which we can calculate

M ′(0)v̂k(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a−1
1

∑m
j=1 pj∂jσ

0
mu−(j−1)

k

−p2a−1
1

∑m
j=1 pj∂jσ

0
1 u−(j−1)

k

−p3a−1
1

∑m
j=1 pj∂jσ

0
2 u−(j−1)

k
...

−pma−1
1

∑m
j=1 pj∂jσ

0
m−1u−(j−1)

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

〈ŵk(0), M ′(0)v̂k(0)〉 = −a−1
1

m∑
j=1

pj∂jσ
0
mu−(j−1)

k − uka−1
1

m∑
j=1

pj∂jσ
0
1 u−(j−1)

k

− u2
k a−1

1

m∑
j=1

pj∂jσ
0
2 u−(j−1)

k − · · · − um−1
k a−1

1

m∑
j=1

pj∂jσ
0
m−1u−(j−1)

k

= −a−1
1

m∑
j=1

pj∂jσ
0
mu1−j

k um
k − a−1

1

m∑
j=1

pj∂jσ
0
1 u2−j

k

− a−1
1

m∑
j=1

pj∂jσ
0
2 u3−j

k − · · · − a−1
1

m∑
j=1

pj∂jσ
0
m−1um−j

k ,

which yields the formula in the lemma. �
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Appendix 2. A lemma

Lemma A.6 For m ≥ 2


